SCHEME OF INSTRUCTION AND EXAMINATION

M.E. (BME) with specialization in Biomedical Electronics

I YEAR: SEMESTER I

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>Scheme of instruction periods per week</th>
<th>Scheme of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L/T D/P Duration (Hours) Maximum Marks</td>
<td>Univ. Exam Sessionals</td>
</tr>
<tr>
<td>1.</td>
<td>Core-I</td>
<td>3 -- 3 80 20</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Core-II</td>
<td>3 -- 3 80 20</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Core-III</td>
<td>3 -- 3 80 20</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Elective-I</td>
<td>3 -- 3 80 20</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Elective-II</td>
<td>3 -- 3 80 20</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Elective-III</td>
<td>3 -- 3 80 20</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Lab-I</td>
<td>-- 3 -- -- 50</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Seminar-I</td>
<td>-- 3 -- -- 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18 6 -- 480 220</td>
<td></td>
</tr>
</tbody>
</table>

I YEAR: SEMESTER II

		L/T D/P Duration (Hours) Maximum Marks	Univ. Exam Sessionals
1.	Core-IV	3 -- 3 80 20	
2.	Core-V	3 -- 3 80 20	
3.	Core-VI	3 -- 3 80 20	
4.	Elective-IV	3 -- 3 80 20	
5.	Elective-V	3 -- 3 80 20	
6.	Elective-VI	3 -- 3 80 20	
7.	Lab-II	-- 3 -- -- 50	
8.	Seminar-II	-- 3 -- -- 50	
	Total	18 6 -- 480 220	
SCHEME OF INSTRUCTION AND EXAMINATION

M.E. (BME) with specialization in Biomedical Electronics

II YEAR: SEMESTER III

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject</th>
<th>Scheme of instruction periods per week</th>
<th>Scheme of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L/T</td>
<td>D/P</td>
</tr>
<tr>
<td>1.</td>
<td>Project Seminar and Dissertation</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>--</td>
<td>6</td>
</tr>
</tbody>
</table>

* Minimum of two presentations to be given by the student. The supervisor will evaluate for 50 marks and the committee consisting of the Head, Chairperson, BOS and one expert will evaluate for 50 marks.

II YEAR: SEMESTER IV

<table>
<thead>
<tr>
<th>1.</th>
<th>Dissertation</th>
<th>--</th>
<th>6</th>
<th>Viva voce</th>
<th>Grade**</th>
</tr>
</thead>
</table>

** Excellent/Very Good/Good/Satisfactory/Unsatisfactory
LIST OF SUBJECTS FOR M.E. (BME) WITH SPECIALIZATION IN BIOMEDICAL ELECTRONICS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Syllabus Ref. No.</th>
<th>Subject</th>
<th>Periods per Week</th>
<th>Revision of syllabus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CORE SUBJECTS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BM 501</td>
<td>Medical Sensors</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>BM 502</td>
<td>Advanced Medical Imaging</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>BM 503</td>
<td>Medi Embedded Systems^^</td>
<td>3</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>BM 504</td>
<td>Diagnostic And Therapeutic Equipment</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>BM 505</td>
<td>Advanced Biomedical Signal Processing^^^</td>
<td>3</td>
<td>M</td>
</tr>
<tr>
<td>6</td>
<td>BM 506</td>
<td>Electronic System Design</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>ELECTIVE SUBJECTS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BM 520</td>
<td>Physiology For Engineers (compulsory to students</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with ECE, EEE & E&IE backgrounds, and open to BME</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>students)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BM 521</td>
<td>Bioinformatics</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>BM 522</td>
<td>Medical Informatics</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>BM 523</td>
<td>Medical Instrumentation (compulsory to students</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with ECE & EEE backgrounds, and open to BME & E&IE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>students)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BM 524</td>
<td>Advanced Biomaterials</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>BM 525</td>
<td>Biotransport Processes</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>BM 526</td>
<td>Hospital Administration & Management</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>BM 527</td>
<td>Physiological Control Systems</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>BM 528</td>
<td>Electromagnetic Biointeraction</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>BM 529</td>
<td>Biostatistics</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>BM 530</td>
<td>Medical Image Processing</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>BM 531</td>
<td>Enterprise Management</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>13</td>
<td>BM 532</td>
<td>Medical Product Design</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>BM 533</td>
<td>Tissue Engineering</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>15</td>
<td>BM 534</td>
<td>Bio Nano Technology</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>16</td>
<td>BM 535</td>
<td>Medical Optics</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>17</td>
<td>BM</td>
<td>Lasers in Medicine^</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>DEPARTMENTAL REQUIREMENTS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BM 507</td>
<td>Lab-I-Transducers & Biosensors Lab</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>BM 508</td>
<td>Lab-II- Embedded Systems Lab</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>BM 509</td>
<td>Seminar -I</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>BM 510</td>
<td>Seminar-II</td>
<td>3</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>BM 511</td>
<td>Project Seminar and Dissertation</td>
<td>6</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>BM 512</td>
<td>Dissertation</td>
<td>6</td>
<td>R</td>
</tr>
</tbody>
</table>

R – Retained M – Modified A – Added Syllabus

^ Lasers in Medicine is introduced has new Elective.
^^ Medi Embedded Systems syllabus is revised.
^^^^ Advanced Biomedical Signal Processing syllabus is revised.
BM 501 MEDICAL SENSORS

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT-I
Principles of transduction and measurement, Sensor Classification, Medically significant measurands-strain, force, pressure, acceleration, flow, volume, temperature and biopotentials. Functional specifications of medical sensors; static and dynamic characteristics of measurement systems. Primary sensors.

UNIT-II

UNIT-III
Reaction variation and electromagnetic sensors. Capacitive sensors, inductive sensors, LVDT, electromagnetic sensors. Signal conditioning, AC bridges, AC amplifiers, electrostatic shields, carrier amplifiers, phase-sensitive detectors.

UNIT-IV

UNIT-V

Suggested Reading:

With effect from the academic year 2012-2013

BM 502 ADVANCED MEDICAL IMAGING

- **Instruction**: 3 Periods per week
- **Duration of University Examination**: 3 Hours
- **University Examination**: 80 Marks
- **Sessionals**: 20 Marks

UNIT-I X ray Imaging: Introduction to Electromagnetic spectrum and their properties, Production of X-rays- X-ray tubes- Insert, housing, filtration, grid, and collimation, -X-ray generator circuit design - Image production. Computed radiography Charge coupled device flat panel detectors - Direct and Indirect detection. Fluoroscopy - Chain components - peripheral equipment - Flat panel digital fluoroscopy

UNIT-II

UNIT-III
Magnetic Resonance Imaging: Introduction - principles of MRI - MRI instrumentation, magnets - gradient system - RF coils and receiver system. Relaxation processes, pulse sequence, image acquisition and reconstruction techniques, Image acquisition in magnetic resonance imaging - T1, T2, proton density weighted images, Artifacts in imaging Various types of pulse sequences for fast acquisition of imaging. Functional MRI - The BOLD effect - intra- and extra vascular field offsets, source of T2* effects, Creating BOLD contrast sequence optimization Sources and dependences of physiological noise in FMRI.

UNIT-IV
Ultrasound Scanner: Physics of ultrasound - Principles of image formation - Capture and display. Basic Ultrasound instrumentation, Imaging techniques and their modes of operation(A mode, B Mode, 2B, B/M, 4B, Gated Mode, 3D, 4D, M-Mode, Echocardiography). Design of scan converters, Design of frame grabbers. High line and low line monitoring of ultrasound displays, Doppler Ultra sound and Color flow mapping of scan conversion (real time imaging) - image processing. Image artifact, Biological effects and Application in medicine

UNIT-V
Nuclear Medicine - Radionuclide production - radiopharmaceuticals - Mechanism of localization - Physics of Gamma camera, basic Instrumentation, Anger scintillation camera - Design principles of operation - Image formation. Emission Tomography imaging - SPECT - Image acquisition and reconstruction - PET - Design and principles of operation - Two and three dimensional data acquisition - comparison of SPECT, PET and combined PET/ X-ray CT.

Suggested Reading:
BM 503 MEDI-EMBEDDED SYSTEMS

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT-I

UNIT-II

UNIT-III

UNIT-IV
Process, task, thread, ISR. Operating system services-goals structures. Kernel. Process Management, Memory management, device management. File systems. Input-output sub systems, task scheduling models. Round Robin, preemptive, real time scheduling. Inter process communication and synchronization. Semaphores, priority inversion, dead lock, message queues, mail boxes, pipes, virtual sockets, RPCs

UNIT-V

Suggested Reading:
With effect from the academic year 2012-2013

BM 504 DIAGNOSTIC AND THERAPEUTIC EQUIPMENT

<table>
<thead>
<tr>
<th>Instruction</th>
<th>3 Periods per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of University Examination</td>
<td>3 Hours</td>
</tr>
<tr>
<td>University Examination</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Sessionals</td>
<td>20 Marks</td>
</tr>
</tbody>
</table>

UNIT – I Cardiac Life support Equipment
Cardiac Pacemakers - Need for Cardiac Pacemaker, Principle of operation, Classification of pacemakers, Cardiac Defibrillators -Need for a Defibrillator – Types of Defibrillator - Defibrillator analyzer. Cardiac Valves, different types Mechanical and Tissue types. Angioplasty. Balloon and Stent Angioplasty., Stents, different types – coil, slotted tubular, drug eluting stents

UNIT-II Anesthesia Machine and Respiratory Care Equipment

UNIT – III ICU & Life Support Equipment

UNIT – IV Haemodialyzers and Lithotripters
Haemodialyzers - Artificial Kidney, Dialyzers, principle of dialyzers, Membranes of the haemodialyzers, Types of Dialysis and merits and demerits. Lithotripters - need of lithotripsy, types of lithotripter systems, techniques, applications and limitations. Endoscopy, Laparoscopy, Keyhole surgery

UNIT – V Diathermy and Radiotherapy

SUGGESTED READING:
With effect from the academic year 2012-2013

BM 505 ADVANCED BIOMEDICAL SIGNAL PROCESSING

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT-I Fundamentals of Discrete-Time signals and systems

UNIT-II The Electroencephalogram(EEG)

UNIT-III Wavelets

UNIT-IV The Electromyogram (EMG)
The electrical Activity of Muscles, Amplitude Estimation in the surface EMG, Spectral Analysis of the surface EMG, Conduction velocity Estimation, Modeling the EMG, EMG Signal Decomposition

UNIT-V The Electrocardiogram(ECG)
Heart Rhythms, Heart beat Morphologies, Noise and Artifacts, Baseline Wander, Power line interference, Muscle Noise Filtering, QRS Detection, Wave Delineation, Data Compression, Heart Rate Variability, Acquisition and RR Interval conditioning , Spectral Analysis of Heart Rate Variability.

Suggested Reading:
4. Roberto Cristi, Modern Digital Signal Processing
BM 506 ELECTRONIC SYSTEM DESIGN

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT-I
Analog and digital circuit design of circuits for biomedical applications using operational amplifiers, active filters, data acquisition, conversion, and interface to microcomputers. Patient safety, patient isolation circuits. Operating principles of various types of patient isolation circuitry. Most suitable isolation circuit for a given application. Test isolation circuits.

UNIT-II
Data acquisition, Sample and Hold Conversion, Multi Channel acquisition, High speed sampling in ADC, Selection of drive amplifier for ADC performance, Gain setting and level shifting, ADC input protection, Multichannel channel applications for data acquisition systems, External protection of amplifiers, High speed ADC architectures.

UNIT-III
Interference and noise reduction techniques. Types of noise-Thermal noise, shot noise, excess noise, Burst, Internal noise in OPAMPs, Noise issues in high speed applications, Causes of noise and interference encountered in medical equipment. Manifestation of noise or interference. Techniques for minimizing the impact of noise or interference when using various types of medical equipment.

UNIT-IV
Hardware approach to digital signal processing, Coherent and non-coherent sampling, Digital signal processing techniques, FFT hardware implementation system – DSP hardware, ALU, Multipliers, accumulators, data address generators, serial ports, system interfacing ADC’s and DAC’s to DSPs. Interfacing IO ports to DSPs, DSP based cochlear implants.

UNIT-V
Use of telemetry in a medical environment. Available frequency bands and licensing requirements for RF telemetry environments. Typical telemetry methods used in medical applications. Common problems with telemetry installations.
Battery management procedures. Types of batteries used in medical equipment. Typical shelf life of common batteries. Applications for common batteries. Techniques to improve life of batteries. Test equipment for correct function after battery replacement.

Suggested Reading:
BM 507-1
TRANSODUCER & BIOSENSORS LAB

Instruction: 3 Periods per week
Sessionals: 50 Marks

1. Experiments on Electrodes- ECG, EEG, EMG

2. Study/Design/Fabrication and testing of:
 (i) ECG system
 (ii) EEG system
 (iii) EMG system
 (iv) GSR system

3. Signal conditioners for the following transducers:
 (i) Piezoelectric transducers
 (ii) Thermocouple
 (iii) Phonocardiography transducer
 (iv) Strain gauge
 (v) LVDT
 (vi) Plethysmographic transducer
 (vii) Capacitive transducer
 (viii) Electromagnetic flow transducer
 (ix) Optical transducer
With effect from the academic year 2012-2013

BM 507-2 EMBEDDED SYSTEMS LAB

Instruction 3 Periods per week
Sessionals 50 Marks

1. Study of different microcontroller development systems
2. Digital interfaces
3. Analog interfaces
4. Keyboard interface
5. LCD Display: Alphanumeric mode
6. LCD Display: Graphic mode
7. PC interface: RS 232
8. PC interface: Ethernet
9. PC –Wireless LAN
10. EZPic Motherboard based experiments: Pic 18 F 452

Note:
The experiments to be conducted under this lab should include design/fabrication/evaluation/technical reporting/case-studies/mini projects. The students should be encouraged to take up different challenging mini projects in this lab.
ELECTIVE SUBJECTS

BM 520 PHYSIOLOGY FOR ENGINEERS
(Compulsory to students with EEE, E&EI & ECE back grounds)

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT – I

UNIT – II

UNIT – III

UNIT – IV

UNIT – V

Suggested Reading:
2. Mount castle Textbook of medical physiology Better World Books, IN, USA
3. Walter F. Boron, Textbook of medical physiology, W.B. Saunders Company
4. Zipes, Jalife, Cardiac Electrophysiology
5. Eric R. Kandel, Principles of Neural Science, Elsevier science division
6. un Kimura, Electrodiagnosis in diseases of nerve and muscle, W.B. Saunders Company
With effect from the academic year 2012-2013

BM 521 BIOINFORMATICS

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT I

UNIT II
Algorithms: Algorithms and complexity, Biological algorithms, computer algorithms, The change problem, Correct, incorrect algorithms, Recursive algorithms, Iterative, recursive algorithms, Fast and slow algorithms, Big-O notation, Algorithm designing techniques- Exhaustive search, Branch-and-bound algorithms, Dynamic programming, Divide-and-conquer algorithms, Randomized algorithms, Gibbs sampling.

UNIT III
Computer algorithms for prediction of protein structures. DNA Sequence Comparison, Algorithms for alignment of sequences and structures of proteins and protein families, PAM, BLOSUM, Bayesian modeling and networks, Probabilistic models or Hidden Markov models, Needleman Wunch and Smith Waterman algorithms, Global sequence alignment, Scoring alignments, Local sequence alignment, Alignment with gap penalties. Multiple alignment, Gene prediction-Statistical and Similarity-based approaches. Spliced alignment.

UNIT IV
Genetic algorithms: Genetic algorithms for the prediction of multiple sequence alignment, Gene expression analysis, Hierarchical clustering, K-Means clustering, clustering and corrupted cliques, Evolutionary trees- Distance-based tree reconstruction, Reconstructing trees from additive matrices, Evolutionary trees and hierarchical clustering. Character-based tree reconstruction- Small parsimony problem, large parsimony problem.

UNIT V

Suggested Reading:
BM 522

MEDICAL INFORMATICS

Instruction: 3 Periods per week
Duration of University Examination: 3 Hours
University Examination: 80 Marks
Sessionals: 20 Marks

UNIT-I:
Planning and designing of Hospital systems: Financial aspects, Equipment, Building, Organization of the Hospital, various medical services in a Hospital, Biomedical engineering and technical aspects: pole and responsibilities. Layout, Setting and Functions of Biomedical Engineering Department in a Hospital.
Biomedical Equipment Management: Procurement process, Training to Medical staff on technical capabilities, Biomedical Equipment maintenance procedures.

UNIT-II:
Database Management (DBMS): Introduction to Data structures, Elements, Arrays, Records, Sets, Tables, Singly and Doubly linked Data, Stacks, Queues and Trees, Need for a Database, Architecture of DBMS. Representation of Data, Physical Record Interface, Data models, Relational, Hierarchical and Network approach.

UNIT-III:

UNIT-IV:

UNIT-V:
Practice: Case studies- Emergency handling systems, insurance handling, data analysis, IVRS applications, Telemedicine, Equipment maintenance management.

Suggested Reading:
BM 523 MEDICAL INSTRUMENTATION (Compulsory to EEE & ECE backgrounds)

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT – I
Origin of biopotentials – ECG, EEG, EMG, EOG, ENG, ERG, EGG.

UNIT – II
Medical display devices and recorders. Basic requirements for the display and recording of biopotential signals. PMMC writing systems, General features of ink-jet, thermo-sensitive and optical recorders, Oscilloscopes- Medical, multi-beam & non-fade display systems.

UNIT – III

UNIT – IV
ECG: Block diagram & circuits, electrode placement, lead configuration, Types of ECG recorders.
Blood pressure measurement: Direct and indirect methods.
Blood flow measurement: Electromagnetic & Ultrasonic techniques.
Heart sounds: Origin, Phonocardiography.

UNIT – V
EEG- Block diagram & circuits, electrode placement, Evoked potentials and their measurement.
EMG-Block diagram & circuits, electrode placement, Nerve conduction velocity determination, EMG stimulators.

Suggested Reading:
BM 524 ADVANCED BIOMATERIALS

<table>
<thead>
<tr>
<th>Instruction</th>
<th>3 Periods per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of University Examination</td>
<td>3 Hours</td>
</tr>
<tr>
<td>University Examination</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Sessionals</td>
<td>20 Marks</td>
</tr>
</tbody>
</table>

UNIT – I

UNIT – II
Biocompatibility and Tissue response: Biocompatibility Hierarchy- Ramifications in Implant Design and Applications. Host Reactions to particulate Biomaterials: Type of Reactions, Particle Surface; cell Surface and Signaling Mechanism, Chemical Mediators. Protein and Cell interactions with biomaterials. Protein conformations, the Conformation Stabilization Forces.

UNIT – III

UNIT – IV

UNIT – V

Suggested Reading:

BM 525 BIOTRANSPORT PROCESSES

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT- I

UNIT- II
Heat transfer systems. Modes of heat transfer, conduction, convection and radiation. Heat production, heat loss to the environment, role of blood circulation in internal heat transfer, models for heat transfer within the body.

UNIT- III

UNIT- IV

UNIT- V
Compartmental models. Approaches to pharmacokinetic modeling and drug delivery, one and two compartmental models. Physiological applications-intravenous injection, constant intravenous infusion, determination of regional blood flow volumes and blood flow rates.

Suggested Reading:
With effect from the academic year 2012-2013

BM 526
HOSPITAL ADMINISTRATION & MANAGEMENT

<table>
<thead>
<tr>
<th>Instruction</th>
<th>3 Periods per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of University Examination</td>
<td>3 Hours</td>
</tr>
<tr>
<td>University Examination</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Sessionals</td>
<td>20 Marks</td>
</tr>
</tbody>
</table>

UNIT – I

UNIT – II

UNIT – III

UNIT – IV

UNIT – V

Suggested Reading:
BM 527 PHYSIOLOGICAL CONTROL SYSTEMS

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT-I
Physiological Systems with feedback, modeling of physiological systems, model based noise reduction and feature extraction. Physiological control systems analysis. Differences between engineering and physiological control systems, Mathematical modeling, linear models of physiological systems, distributed parameter and lumped parameter models

UNIT-II
Static analysis of physiological systems, Determination of steady state operating point, Steady state analysis, Regulation of cardiac output, Chemical regulation of ventilation. Time domain analysis of linear control systems. Transient response analysis- dynamics of neuromuscular reflex motion. Frequency domain analysis of linear control systems, frequency response of circulatory control and glucose insulin regulation.

UNIT-III

UNIT-IV
Modeling the nerve action potential, voltage clamp experiment and its interpretation, model for the strength duration curve, modeling skeletal muscle contraction, cross bridge theory of muscle contraction, linear model of muscle contraction, applications of skeletal muscle contraction, modeling myoelectric activity

UNIT-V

Suggested Reading:
BM 528 ELECTROMAGNETIC BIOINTERACTION

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT-I
Electromagnetic Spectrum, Exposure and absorption parameters, International guidelines, Currents induced in standing human being for vertically polarized plane wave exposure conditions, contacts hazards in VLF to HF band, thermal implications of high SARs, Coupling of human body to RF magnetic fields, Radio Frequency protection guide (RFPG).

UNIT-II

UNIT-III
Role of Experimental Techniques and Instrumentation in bioelectromagnetics: Irradiation systems for bioeffects experiments, Far-field exposure techniques, Instrumentation, Measurements of internal fields and radiofrequency absorption in biological systems, Instruments for measuring Specific Absorption Rates.

UNIT-IV
EM energy absorption in human and animals: Measurement techniques, Free space irradiation conditions, Ground effects, SAR exposure assessment and safety guidelines.
Biological effects and Health implications: Effects due to extremely LF and 60 Hz fields.

UNIT-V
Biological effects of millimeter wave radiation: Experimental approaches, frequency specific effects, genetic systems, cellular and sub cellular effects. Electromagnetic methods for medical applications.

Suggested Reading:
With effect from the academic year 2012-2013

<table>
<thead>
<tr>
<th>BM 529</th>
<th>BIOSTATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>3 Periods per week</td>
</tr>
<tr>
<td>Duration of University Examination</td>
<td>3 Hours</td>
</tr>
<tr>
<td>University Examination</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Sessionals</td>
<td>20 Marks</td>
</tr>
</tbody>
</table>

UNIT- I
Concepts of Biostatistics. Basic statistical measures, measures of central tendency, measures of dispersion, variance, standard deviation, properties of probability, probability distributions, sampling distributions.

UNIT- II
Estimation and hypothesis testing. Confidence intervals for data, t distribution, determination of sample size for estimating means and proportions. Hypothesis testing for a single population mean/proportion difference between two population means/proportions, sample size to control type I and type II errors.

UNIT- III
Analysis of variance. The completely randomized design, random sized complete block design, repeated measures design.

UNIT- IV
Regression and correlation. Simple linear regression model, regression equation, the correlation model, multiple linear regression model, multiple regression equation, multiple correlation model, additional techniques of regression analysis.

UNIT- V
Chi-square distribution, tests of good fit, independence, homogeneity, non-parametric statistical procedures, regression analysis.

Suggested Reading:

BM 530 MEDICAL IMAGE PROCESSING

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT-I
Digitized image functions, Dirac distributions, convolution, Fourier transform, Images as linear system.
Image digitization, sampling, Quantization, color images. Digital image properties, Metric and
topological properties, Histogram visual perception, Image quality, Noise. Data structures for image
analysis, data representation, traditional and hierarchical data structures.

UNIT-II
Image Enhancement. Contrast manipulation, histogram equalization, Laplacian derivatives, Sobel and
Klisch operators, rank operators –textural analysis. Image pre processing – pixel brightness
transformations, Geometric transformations, local pre processing, Image restoration. Imaging filters.

UNIT-III
Thresholding and Segmentation. Detection methods, optimal thresholding, multi-spectral thresholding.
Edge based segmentation, Region based segmentation, Matching, Advanced optimal border and
surface detection approaches.

UNIT-IV
Restoration. Deterministic, geometric linear filtration, inverse filtering, power spectrum equalization,
stochastic. Wiener filtering. Registration, anatomy based, object based, scene based.

UNIT-V
Mathematical morphology. Basic morphological concepts, Morphological principles: Binary dilation
and erosion, Gray scale dilation and erosion, skeletons and object marking, graundometry,
Morphological segmentation and water sheds.

Suggested Reading:

BM 531 ENTERPRISE MANAGEMENT

Instruction: 3 Periods per week
Duration of University Examination: 3 Hours
University Examination: 80 Marks
Sessionals: 20 Marks

UNIT-I
Indian Industrial Environment-Competence, Opportunities and Challenges, entrepreneurship and economics growth, Small Scale Industry in India, Objectives, Linkage among small, Medium and heavy Industries, Types and forms of enterprises.

UNIT-II
Identification and Characteristics of entrepreneurs, Emergence of First generation entrepreneurs, environmental influence and women Entrepreneurs, Conception and evaluation of ideas and their sources. Choice of Technology-Collaborative interaction for Technology development.

UNIT-III
Project formulation, analysis of market demand, demand - supply gap, Financial and Profitability analysis and technical analysis, project financing in India. Project Management during construction phase, project organization, project planning and control using CPM, PERT techniques. Human aspects of project management, Assessment of tax burden.

UNIT-IV
Behavioral aspects of entrepreneurs: Personality - determinants, attributes and models, leadership concepts and models, values and attitudes, Motivation aspects, change behavior, Various approaches of time management, their strengths and weaknesses. The urgency addiction and time management matrix

UNIT-V

Suggested Reading:

BM 532 MEDICAL PRODUCT DESIGN

<table>
<thead>
<tr>
<th>Instruction</th>
<th>3 Periods per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of University Examination</td>
<td>3 Hours</td>
</tr>
<tr>
<td>University Examination</td>
<td>80 Marks</td>
</tr>
<tr>
<td>Sessionals</td>
<td>20 Marks</td>
</tr>
</tbody>
</table>

UNIT-I

UNIT-II
Specifying and designing the product. Engineering requirements-design specification, risk management, intellectual property-patents, human factors, Hardware design-component selection, design of experiments, software design-object oriented design, software coding.

UNIT-III
Testing and data analysis. Basis and types of testing, hardware verification and validation-standard tests, software verification and validation, reliability evaluation, analysis of test results-failure rate, Mean Time Between Failures (MTBF).

UNIT-IV
Manufacturing and Maintenance process. Good manufacturing process (GMP), the GMP Regulation, Design for manufacturability, manufacturing process, Quality systems regulation, configuration management, Quality system audit, analysis of field data.

UNIT-V
Medical device regulations and standards. Food and Drug Administration, Medical device directives ISO 9001 series of standards, Domestic standards, International standards.

Suggested Reading:

With effect from the academic year 2012-2013

BM 533 TISSUE ENGINEERING

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT – I
Growth and Differentiation, Organisation of cells into Higher ordered structures, Dynamics of cells-ECM interactions, Matrix molecules and Their ligands, Inductive Phenomena, Cell Determination and Differentiation, Mechanical and Chemical determination of Tissue Development , Animal Cell Culture, Regulations of cell Behaviours cellular proteins, Growth factors , Tissue Assembly in Micro Gravity, In vivo Synthesis of Tissues and Organs.

UNIT – II

UNIT – III
Approaches to transplanting Engineered cells and Tissues, Cryopreservation,Immunomodulation, Immunoisolation, Engineering challenges in immunoisolation,Fetal tissue Engineering,Pluri potent stem cells, Gene Therapy.

UNIT – IV

UNIT – V

Suggested Reading :

BM 534 BIO NANO TECHNOLOGY

Instruction: 3 Periods per week
Duration of University Examination: 3 Hours
University Examination: 80 Marks
Sessionals: 20 Marks

UNIT-I MEMS & NEMS:
Definition of MEMS, materials for MEMS (Silicon, Polymers and metals) and their properties, Deposition processes, Photolithography, and etching processes, Limitations of MEMS, NEMS, difference between MEMS and NEMS, properties of NMES, fabrication processes, applications.

UNIT-II Introduction to Nanotechnology:
Nanomaterials, Fullerenes and carbon forms. Nanoparticles and Colloids, structure and bonding in nanoparticles, Nanomaterials fabrication by Bottom-up and Top down approaches, Classification of nanodevices based on the characteristics, Quantum dots and their properties.

UNIT-III Carbon nanotubes:
Carbon nanoparticles, types of carbon nanotubes, single-walled, multi-walled, torus, nanobud, properties of carbon nanotubes, and synthesis by Arc discharge, laser ablation, chemical vapor deposition techniques

UNIT-IV Nanomedicine:

UNIT-V Bio molecular nanotechnology:
Nanorobots and their application, nanosensors based on biomolecules such as DNA and proteins, nanoparticles for gene delivery systems, Computational genes, Biosensors for Glucose and measurement, Optical biosensors and their application.

Suggested Books:
2. Neelina Malsch, Biomedical nanotechnology by CRC press release, Malsch TechnoValuation, Utrecht, The Netherlands
BM 534 MEDICAL OPTICS

Instruction 3 Periods per week
Duration of University Examination 3 Hours
University Examination 80 Marks
Sessionals 20 Marks

UNIT I Introduction to Optical Fibers
Basic optical laws and definitions, optical fiber modes and configuration, single mode fibers, graded index fiber structure, fiber materials, attenuation, signal distortion in optical waveguides, pulse broadening in graded index waveguides.

UNIT II Optical properties of tissues
Tissue properties – refractive indices, scattering and absorption properties, light transport inside the tissue, light interactions with a strongly scattering tissue – continuous wave light, short light pulses, diffused photon density waves, Temperature rise and tissue damage – optothermal and opt acoustic effects. Fluorescence speckles.

UNIT III Instrumentation in Photonics
Instrumentation for absorption, scattering and emission measurement, excitation light sources – high pressure arc lamp, solid state LEDs, LASERs, optical filters, polarizer’s, solid state detectors, time resolved and phase resolved detectors

UNIT IV Biophotonic Diagnostics
Near IR spectroscopy for biological glucose analysis, flowcytometry – basic operation, optical response – applications – optical biosensors – principles, biorecognition, optical transduction – Bioimaging – cellular, tissue imaging and in vivo imaging. Introduction to Optical Coherence Tomography

UNIT V Biophotonic Therapy
Photodynamic therapy – basic principle, photo sensitzers, mechanism of photodynamic action, applications – Laser tissue welding, lasers in dermatology, neurosurgery, ophthalmology, urology.

Suggested reading books