B S 304 MT

as per AICTE model

University College of Engineering(A)

With effect from the academic year 2019 - 2020

MATHEMATICS-III (PDE, PROBABILITY & STATISTICS)

(Mechanical Engineering)

Instruction :	4 Periods per week
	(3 Theory + 1 Tutorial)
Duration of SEE:	3 Hours
SEE:	70 Marks
CIE:	30 Marks
Credits :	4
Corse Objectives:	
-	To introduce the solution methodologies for first order and second order partial differential equations.
	To introduce separation of variables method to solve heat and wave equation.
	 To learn random variables and their properties.
	To understand probability distributions, curve fitting, correlation and regression.
	 To introduce tests of significance.
Course Outcomes:	
	Upon completion of this course, students will be able to
	• solve linear first order and second order partial differential equations.
	• solve one-dimensional heat and wave equations using separation of variables.
	• solve problems involving random variavles.
	• fit curves for a given data and perform a regression analysis and to compute and interpret the coefficient of correlation.
	• estimate unknown parameters of populations and apply the

• estimate unknown parameters of populations and apply the tests of hypotheses.

Unit-I: Definition of Partial Differential Equations, First order partial differential equations, solutions of first order linear PDEs; Solution to homogenous and non-homogenous linear partial differential equations of second order by complementary function and particular integral method.

Unit-II: Second-order linear equations and their classification, Initial and boundary conditions, D'Alembert's solution of the wave equation; Heat diffusion equyation, Separation of variables method to simple problems in Cartesian coordinates., one dimensional diffusion equation and its solution by separation of variables.

Unit-III: Measures of Central tendency: Moments, skewness and Kurtosis, Discrete random variables, expectation of discrete random variables, moments, variance of a sum, continuous random variables & their properties, distribution functions, and densities.

Unit-IV: Probability distributions: Binomial, Poisson and Normal, evaluation of statistical parameters for these three distributions, Curve fitting by the method of least squares: fitting of straight lines, second degree parabolas and more general curves, Correlation, regression and rank correlation.

Unit-V: Test of significance: Large sample test for single proportion, difference of proportions, Small sample Test for single mean, difference of means, and difference of standard deviations, Test for ratio of variances, Chi- square test for goodness of fit and independence of attributes.

Textbooks/References:

- 1. R.K.Jain & S.R.K Iyengar, Advanced Engineering Mathematics, Narosa Publications, 4th Edition 2014.
- 2. B.S.Grewal, *Higher Engineering Mathematics*, Khanna Publications, 43rd Edition.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons.2006.
- 4. S. Ross, "A First Course in Probability", Pearson Education India, 2002.
- 5. S.C Gupta & Kapoor: Fundamentals of Mathematical statistics, Sultan chand & sons, New Delhi.