## APPLIED MATHEMATICS

(E.C.E)

Instruction
Duration of SEE
SEE
CIE
4 Periods per week
(3 Theory +1 Tutorial)
3 Hours
70 Marks
30 Marks
Credits
3
Course objectives:
$>$ To introduce the concept of vector spaces and linear transformations
$>$ To introduce a few numerical methods to solve certain types of problems
$>$ To study correlation, regression and optimization
Outcomes: At the end of the course students will be able to

- analyze vectors geometrically and algebraically and to represent transformation by matrices.
- solve non linear equations, system of linear equations and ordinary differential equations numerically.
- formulate and model a linear programming problem from a word problem and solve them using simplex method in 2 and 3 dimensions.
- perform a regression analysis and to compute and interpret the coefficient of correlation.


## UNIT- I

## Linear Algebra:

Vector spaces, Subspaces, Basis and dimension, Linear transformations and their representation by matrices, Rank and Nullity of transformation.

## UNIT- II

## Numerical methods:

Solution of Algebraic and Transcendental equations-Bisection method, Regula falsi method, NewtonRaphson method, Solution of linear system of equations, Gauss elimination method, Gauss- Seidel iteration method, Interpolation, Lagrange's interpolation, Newton's divided difference interpolation, Newton's Forward and Backward difference interpolations.

## UNIT- III

Numerical differentiation, Interpolation approach, Numerical solutions of ordinary differential equations Single step methods, Taylor's series method, Euler method, Picard's method of successive approximation, Runge-Kutta method of $4^{\text {th }}$ order, Multi step methods, Predictor-Corrector method, Euler PC method, Miline and Adams Moulton PC method.
UNIT-I V
Curve fitting:
Curve fitting by method of least squares, correlation and regression, types of correlations, Karl Pearson's coefficient of correlation, Spearman's rank correlation coefficient, equal ranks, equations to the lines of regression.

## UNIT- V

## Optimization:

Basic Concepts,Unconstrained Optimization, Linear Programming, Simplex method, Simplex Method : Difficulties.

## Suggested Reading:

1.R.K.Jain \& S.R.K Iyengar, Advanced Engineering Mathematics, Narosa Publications, $4^{\text {th }}$ Edition, 2014.
2. B.S.Grewal, Higher Engineering Mathematics, Khanna Publications, $43^{\text {rd }}$ Edition, 2014.
3.Erwin Kreyszig, Advanced Engineering Mathematics, $9^{\text {th }}$ Edition, John Wiley \& Sons,2012.
4.S.C.Gupta and V.K.Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand\& Sons, 2014.

